
CatchAR: Prototyping Partial Object Manipulation, Naturalistic Throwing
Interactions, and Intuitive Navigation Systems with AR Glasses

Alejandro Romero*

Brown University

ABSTRACT

Presently, fully immersive augmented reality (AR) experiences are
few and far between, with many of the most popular AR inter-
faces relying on user input via smartphone touchscreens as opposed
to more naturalistic interactions such as real-time hand tracking.
CatchAR leverages Snap Spectacles, a pair of AR glasses capable
of applying a vast array of emerging computer vision techniques to
create immersive AR environments, to expand upon prior research
at the Brown HCI Lab. The project allows users to throw objects
via real-time hand tracking and explore AR environments using a
responsive and intuitive navigation system.

Keywords: Augmented Reality, Hand Tracking, HCI

1 INTRODUCTION

During my graduate studies at Brown, I worked in the HCI Lab with
professor Jeff Huang and Jing Qian to develop CatchAR, a demo
leveraging techniques from the lab’s Portal-ble project to create a
truly immersive AR experience.

Figure 1: The small profile of the 2021 Snap Spectacles allow
them to be worn by users as naturally as a pair of prescription

glasses

Most current mainstream AR experiences are not truly immer-
sive; that is, they rely on users to provide input via interfaces on
their smartphones to interact with virtual objects projected onto the
real world. However, Snap Inc.’s 2021 Spectacles are an example
of true augmented reality. The glasses are able to project 3D envi-
ronments into the user’s world and support naturalistic interactions,
such as hand tracking, that allow users to become truly immersed
in an AR experience.

*e-mail: alejandro romero@alumni.brown.edu

Figure 2a (Left), Figure 2b (Right): Examples of a user throwing
Pokéballs in AR with their own hand.

CatchAR addresses this by taking work done for the Portal-ble
project and generalizing its use cases to AR glasses. Portal-ble cur-
rently allows users to use their smartphones to engage with virtual
worlds via real-time hand tracking. CatchAR takes this method one
step further by eliminating the need to hold one’s phone. Instead,
CatchAR is presented right in front of a user’s eyes, freeing their
hands for a more genuine AR experience (Figure 1).

2 APPROACH

Pokémon Go is the biggest augmented reality app currently avail-
able. It allows users to explore their environments and interact with
virtual objects projected therein. However, these features are held
back by their reliance on handheld devices and limited screen space.

CatchAR takes AR navigation and object manipulation to a new
level, tying these experiences to the user’s physical surroundings
via a lightweight head-mounted display. However, due to the shift
to a device with more limited compute power, I had to re-imagine
how these features would be implemented.

For instance, partial object manipulation is achieved via real-
time hand tracking. Because a touchscreen is no longer needed,
the potential area for hand interaction becomes larger, allowing for
throws that feel much more human. Further, Pokémon Go currently
utilizes a highly detailed map view to display Pokémon in the area.
Inspired by first-person video games, I implemented a navigation
system that uses relative coordinates of objects within the scene to
show a user where to go next via a mini-map and 3D arrow, which
take up a fraction of a user’s view, allowing them to still see their
environment and the virtual objects anchored within it.

3 ARCHITECTURE AND IMPLEMENTATION

3.1 Setup
I used Lens Studio, Snap Inc.’s proprietary development environ-
ment, to develop the project. All code was written in JavaScript,
and assets were edited using Blender prior to being imported into
the final project directory. The experience (known on Snapchat as
a lens) is supported on both Spectacles and smartphones via the
Snapchat app. It is optimized for both platforms.



Figure 3: Diagram and accompanying pseudocode for the real-time navigation system graphically leading users to the nearest Pokémon
spawn location.

3.2 Throwing in AR

Lens Studio currently has a template for using their hand track-
ing package, which I used as a foundation for the lens’ solution to
throwing Pokéballs to catch Pokémon. Using the device’s camera
feed, the algorithm uses distinct hand features (i.e. joints of each
finger) to approximate the real-world location of the user’s hand.
These coordinates are then normalized to correspond to the virtual
world such that the user’s hand can manipulate rendered objects.

Previous work on Portal-ble included the conception of a throw-
ing algorithm that calculates the expected velocity and trajectory of
a projectile given the user’s hand motion data. To do this, I created
a ring buffer of the user’s ten latest hand positions and calculated a
velocity vector based on the average of these positions, which was
then fed into a physics algorithm to make the ball move.

This approach was necessary as Lens Studio did not have a
physics engine at the time that development on this project started.
However, once Lens Studio’s physics engine was released, we re-
fined the formula and fed our velocity vector into this physics sim-
ulation instead, providing more compelling results. This also al-
lowed me to create more realistic interactions with the environment,
using rigid body colliders to have balls bounce off of Pokémon and
the ground plane upon contact.

The act of throwing was an important consideration in itself, as
determining an object’s point of release is a deceptively nontrivial
task. The queue of hand positions is updated every frame. A release
event in our lens is defined as a frame in which the tip of the thumb
and tip of the index finger exceed a certain distance from one an-
other. Because of the variability in human hand sizes, this distance
is calculated proportionally to the size of the rendered hand. Once a
release is detected, a Pokéball, which is initialized as a child of the
hand’s transform, becomes un-parented, allowing for the physics
engine to act upon it as per the velocity vector calculations provided
by our calculations. The result is a method for realistically throw-
ing virtual objects that generalizes to different throwing movements
(e.g. overhead or underhand throws) (Figure 2).

3.3 Navigation

Initially, I wanted to implement a path finding system that would
route users to the nearest Pokémon by projecting a path onto the
ground (Figure 5). However, given the limitations of Lens Studio,

I soon realized that a I would have to consider a different solution.
This resulted in two features: a mini-map showing users the relative
location of Pokémon spawn locations and a 3D arrow indicating
which direction the nearest of these spawn locations was in.

The mini-map was implemented using an orthographic camera
above the scene that can see UI objects hidden from the lens’ main
camera. These UI objects were parented to their 3D counterparts in
the 3D scene, so they moved with them upon scene updates. This
allowed for optimization in the lens by significantly reducing the
number of calculations that had to be performed during each frame
update. The center icon of the mini-map moves in response to the
device’s orientation.

Figure 4: The lens’ UI, which includes a mini-map, directional
arrow indicator, and a counter recording the number of Pokémon

caught.

The 3D arrow indicator was more challenging in implementa-
tion, but a useful asset in enhancing the user experience. At any
given time, three potential Pokémon spawn locations are visible.
These spawn locations are randomized within 500 units of the main



camera. The arrow indicator is rendered by taking these three
spawn locations and calculating the one with the least distance to
the camera’s current position. Its orientation is then calculated by
finding the angle between the camera coordinate and the nearest
spawn point. If the user travels closer to a different spawn point,
the calculation is rerun, and the arrow is updated in real-time (Fig-
ure 3).

Once a user catches a Pokémon, the spawn point disappears and
is re-randomized to a new location within 500 units of the user. This
allows for the illusion of continuous exploration while constraining
the number of objects instantiated in the scene.

Figure 5: A test lens I developed to prototype routing navigation
in AR.

3.4 Gamification Features
To enhance the user experience, I added features to gamify the ex-
perience and reward the user for trying out the lens.

When a user gets close to a Pokémon spawn point (300 units
away), the navigation features are toggled off, and a Pokémon ap-
pears (randomized from a list of four possible Pokémon meshes).
This mode toggling was implemented to optimize the use of limited
computer power on Spectacles and also acts as a way to de-clutter
the screen from a user’s perspective.

Once a user is within this throwing distance, they can then use
hand tracking to throw a Pokéball. When the ball’s rigid body
makes contact with that of the Pokémon, audiovisual cues are
played to signify success, and the user’s score is incremented. Ad-
ditionally, the Pokéball changes color with subsequent catches.

I also learned from user feedback that it would be beneficial to
implement a tutorial screen to educate users about hand tracking (a
fairly new interaction method to most people), as well as the other
features of the lens. This took the form of a brief 10 second video
played once the lens is initialized.

4 CONCLUSION AND FUTURE WORK

CatchAR is a step towards fully immersive interactive experiences
that bridge the gap between the virtual and physical worlds. By
leveraging fully AR glasses such as Snap Spectacles, we eliminate
the need for handheld devices, allowing users to interact with vir-
tual objects almost as intuitively as they would with real ones.

There are many potential future extensions of the current work,
including avenues such as adaptive throwing algorithms to account
for human inaccuracy, the use of speech recognition, enhancing the
mini-map via surface detection and visualization, realistic occlu-
sion, the introduction of social features, among many more. The
framework developed for CatchAR can be modified to create simi-
lar experiences leveraging waypoint navigation, such as for educa-
tional purposes.

5 USEFUL LINKS

• GitHub Repo: https://github.com/brownhci/
Spectacles

• Interactive Demo: https://lens.snapchat.com/
9eff1581da8e4ba7a5208787e08348f2

• Case Study: https://alejandroromero.me/proj/
spectacles.html

• Portal-ble: https://portalble.cs.brown.edu/

ACKNOWLEDGEMENTS

I wish to thank professor Jeff Huang and Jing Qian for their direct
help on this project. I would also like to extend my gratitude to the
rest of the Brown HCI group for their feedback throughout the year.
I would also like to thank Danny Pimentel from the University of
Oregon for fruitful discussion and providing assets used for testing.
I would also like to thank the Snap Inc. Spectacles team for pro-
viding us with this technology, as well as their help throughout the
development process.

https://github.com/brownhci/Spectacles
https://github.com/brownhci/Spectacles
https://lens.snapchat.com/9eff1581da8e4ba7a5208787e08348f2
https://lens.snapchat.com/9eff1581da8e4ba7a5208787e08348f2
https://alejandroromero.me/proj/spectacles.html
https://alejandroromero.me/proj/spectacles.html
https://portalble.cs.brown.edu/

	Introduction
	Approach
	Architecture and Implementation
	Setup
	Throwing in AR
	Navigation
	Gamification Features

	Conclusion and Future Work
	Useful Links

